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The wave forms of motion of a thin infinite shell of revolution defined by initial displacements and velocities localized in the 
neighbourhood of a parallel are studied. Using the method developed in [1], a solution of the equations of motion is constructed 
as a superposition of tangential and flexural wave packets propagating in the direction of the shell axis. As an example, an elongated 
conical shell is considered. O 1997 Elsevier Science Ltd. All rights reserved. 

The problem of the propagation of localized families of flexural waves in a cylindrical shell of moderate 
length was considered in [3] using Maslov's method [2]. The behaviour of the wave packets was found 
to depend on the geometry of the shell, and it was observed, in particular, that it is possible for the 
waves to be reflected from generatrices on which the surface of the shell is extremely curved. 

1. F O R M U L A T I O N  OF THE P R O B L E M  

Consider an infinite shell of revolution of thickness h. Let s = Rx be the arc length of the generatrix 
(--~ < x < +oo) and let q~ be the angle measured around the shell. Here R = B(0) is the characteristic 
dimension of the :;hell, where B(x) = Rf(x) is the distance to the axis of revolution. In this system of 
coordinates the first quadratic form of the surface has the form R2(dx 2 + f2d~p2). The principal radii of 
curvature R1 and R2 satisfy the relations 

~ ,2 R f R I = - R  , R2= 

Here and hencefo:rth we use a prime to denote the derivative with respect to x. 
We shall study non-axially-symmetric forms of motion with wave number m0 around the shell. We 

begin with the linear equations 

( L + ~  2 I~ t2)U r = 0 (1.1) 

based on the Kirchoff-Love hypotheses. Here U = (Ul, u2, u3) , u~ ~- R cos (m09)u3 is the normal, and 
u~ = R cos (m0p)u~ and u~ = R sin (m0~p)u2 are the tangential displacements of the points on the median 
surface in the axial and circumferential directions, respectively, t = t*/T* is the dimensionless time, T* 
= R[(1 - v2)p/E] 1;'' is the characteristic time, andp,  v and E are the density of the material, Poisson's 
ratio and Young's modulus, respectively. We will denote by the 3 x 3 matrix formed by the operators 
[4, p. 104] 

/-alZ = 3x f ( f z ) + ( l - v )  - k l k  2 z 

l~2z = -mo ~ + 2 f 2 
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L2,z -~- -~f (fz) 2 ax 

f a x  (k2yz), 

~ 4 1 [ l ( a  f a _m~l]2 I ( a  f , ,  a ~ n,2Qf "' 
[LTL  : ; j  :" 

+(k, + + 

where E 4 : h2/(12R 2) is a small parameter, k I = R/R~, and k 2 = R/R2. 
Suppose that an initial wave packet with centre on the parallel x = 0 is given 

uj l ,= ° = ~,°(~,E)exp{ie-lSo(x)}, j = 1,2,3 

I.,3.2 = 1.,23 

hjL=O = iEjl]°(~,~)exp{iE-'So(x)} 

(1.2) 

where 

So(x)=aox + ~bo x2, Imb o > 0  

;~o = ~- 8k/Ekj,(;), TI~ = ~. 8kZ='qj,(;) (1.3) 
k=O k=O 

=c-~x, E~=e2 =e-I. e3=l 

Here ~k(~) and rljk.(~) are polynomials of degree Mjk and Kjk, respectively, with complex coefficients. 
Differentiation with respect to time t is denoted by a dot. 

Here we shall consider the case when m o = e-lm, where m ~ 1. 

2. TANGENTIAL WAVES 

From (1.2) it follows that 0/~ - e -I in (1.1). Let a/at - e -a, where ~ I> 0. To study the tangential 
motion we set Ul = u~, u2 = v~, u3 = ef~w,, where 15 I> 0 and u~, v~, w~ - I. It is required that the terms 
containing the leading derivatives with respect to x in the first and second expressions in (1.1), and the 
inertial terms should be infinitesimals of the same order and be contained in the asymptotically leading 
part of the resolving system, ensuring that the integrals are of wave type. Hence we find that ct = 13 = 
I and the equations for the tangential waves have the form 

(L+a2, at2)(E~tUr) = 0 
• ( 2 . 1 )  

E~ =diag(l,l ,e).  U: =(u,,u~,w,) 

Following [1], we shall seek a solution of (2.1) with initial conditions (1.2) as a wave packet with centre 
a tx  = q~(t), where q,(t) is a twice differentiable function such that q,(O) = 0. In (2.1) we change to a 
new system of coordinates using the formula 

x = q~(t) + ~Y~, 

We expand each of the functions in (2.1) in a Taylor series in powers of e1:z~ in the neighbourhood of 
q~(t). Let Q~ be the domain of variation of q~(t). We assume that for any q~ ~ Q~ the values of all the 
coefficients and their derivatives in (2.1) are of order one as £ --> O. 
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We will seek an asymptotic solution of (2.1) of the form 

Ux= ~ 1~'/2U~,, exp{i~-ls~(~,t,~)} 
k=O 

S~ = J co~(t )dt +~ p~ft)~ + 
o 

Ux.k =(Ux.k ,U ~:,k, W't,k) 

(2.2) 

where u~,(~, t), vx~,(~, t), w~(~,  t) are polynomials in ~,  and Im bx(t) > 0 for any t/> 0. To determine 
the unknown functions in (2.2) we substitute (2.2) into (2.1) and equate the coefficients of like powers 
of e u2. As a result, we obtain a sequence of equations 

y. r L~.iU~.~_~ = 0, k = 0,1,2 .... (2.3) 
j=O 

Here L~, 0 is a 3 x 3 matrix with elements 

2 ( l -v )m 2 . 2 im(l +v)px 
-qxPx) , = Ix.II  = Pt + 2f2 -(tOe It.12 -- 2f  

l - v  2 m.._2_ 2 
/x,21 =-l'c.12, /x.22 =-'-~'--P'c + f2 -(0).~ _q,p,)2 

m 
l~.3! = -ip~ (k I + vk 2 ), l~.32 = - 7 (k2 + vkl ) 

t~. .=-(~-q~p~) ~, l~.~.,=l,.2~=O 

and L~,j (j I> 1) are matrix-valued operators defined by 

( aL, o ~L,o ~L,o ~ .~L~0 
L~., = lb~[, ~P~"-+ ~q~"" +/~z-~=-- ) ~  - t  ~p~'" ~ 

1 [  ~2L~o + ~2L~o ~2L~o .2 t~2L~ 0 /)2L~. 0 ~L~o ) 
LT.2 = bll ~_---~?-~- 2bx "'- + ~ + P T  +2b~bx +bx " ~- 

Op, ~"x~q, ~qx ~ 3tOx~p~ 

! O2L~, 0 ~2 f t)2L~o /)2L~ 0 /}2L~o / ~  0 .OLd, 0 
2 Op~ ~ - i l b ~ +  "'-+Pt - '  - - -  

( 1  / ) 2 t ' x o + l .  '2Lxo '2L,  o ) -i b~--S=~'-= ~ -co~+p~- - - - - - - - : '  +N~ 
~p, ~ ow, ~co~p~ .... 

(2.4) 

In (2.4) N~ denotes a matrix with elements 

_ f _ i(3- v)mf" 
n~,l|-"ffP~+Cl~P~, n~,12 2f2 ' 

(l-v)f'p~ 
/'1~,21 ----n~,12, PI~.22 = +/l~p~, 

2f 

n~.13 = 0 

n~,23 -- 0 

n~.31=iI.(l-fk2f)" (kl+~2)f ' ] ,  n~.32=0, n~.a3=tl~p~ 

Considering (2.3) for k = O, we can find a relation between the instantaneous frequency oh(t) and 
the functions pc(t), q~(t) 
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(l) (t) (l) CO~')(t)=it~l)(t)p~l)(t)-Ht [p, ( ,) ,q,  (,)], /=1,2 ,3 ,4  

~1 = 1, ~2 = - 1  
I- m 2 

H~t)(p,q) = ~)tl p 2 +I- q>J ' 

(2.5) 

Here H,  0), H~ (2) are the Hamilton functions corresponding to the two branches of longitudinal 
waves, while/~(3), / /(4) correspond to the two branches of torsional waves. Henceforth the super- 
script I will be omitted. It will be understood that packets of longitudinal or torsional waves are 
considered. 

From (2.3) for k = 0 it follows that 

U,.o = P~.o(~t, t)Y,.o (2.6) 

(2.7) 

where 

Yx.0=(Yl Y2, Y3), Yl =1, Y2 =-Ix, I 1-1 ' I 't,12 

Y3 = ( l~.t 21~..a3 )-I (1,.321~.11 _ 1~.311~.12 ) 

For k = 1 in (2.3) we have a non-homogeneous system of algebraic equations, which can be solved under 
the condition 

• r ( 2 . 8 )  Z~.0L~.tU~. 0 = 0 

where Z~, 0 is any non-trivial solution of the system adjoint to (2.3) for k = 0. By (2.6), condition (2.8) 
is a differential equation for P~, 0(~, t). For this equation to have a solution that is a polynomial in 
it is necessary thatpt(t)  and q,(t) should be a solution of the Hamilton system 

OH, 0H, 
(2.9) 

T h e n  

0Y, o 0Y~o'~ .0P~o0Y~.o 
U~., =p~:Y~.o+~P~o. bx Op"- + Oq"- J-l ~,"" OPt (2.10) 

where P~:(~,t) is a polynomial in ~ to be determined. 
When (2.6), (2.9) and (2.10) are taken into account, the condition for (2.3) to be solvable for k = 2 

gives again a differential equation for P,,0 

• r ( 2 . 1 1 )  z ,  o ( L , , U , ,  * 0v, 0) = 0 

The latter has a polynomial solution if and only if b,(t) is a solution of the Riccati equation 

• O2Ht ~2 02Ht  + 02Hi  (2.12) 

Then (2.11) takes the form 

l O2H, O2p,.o "(b o2H* 02Hx "~ OP*° OP*o 
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( )' • OLt.o y r  Z" ['( lb ~)2Hx OLeo 1 . O2L~o 
+i Z~.o-ff~-- ~.0 ~0 -- ~ ~ _  " ' - + - - ( 0 ~ +  

• L I ,2  2,0. 2 a=. 

OL, o ~Yro ]  2L ,0 vr  ° (2.13) 

Equation (2.13) has a polynomial solution 

Ot,O 
P,.0 = Y A~.o*(t;Coi)~ (2.14) 

k=0 

of degree t~,0 whose coefficients A~,0k contain arbitrary constants co/(i = 0, 1 , . . . ,  a~,0). We will not 
give the explicit form of A~,0k because of its complexity. 

When k ~> 3 the condition for (2.3) to be solvable leads to non-homogeneous differential equations 
for P~j,-2. 

3. T R A N S V E R S E  WAVES 

Let 3o/Ot - e -a, ul = ef~un, us = eVv, and u 3 = w,, where a, ~, 7 ~> 0. We require that the inertial term 
and the terms containing higher derivatives in x in the third equation in (1.1) should be infinitesimals 
of  the same order and appear in the leading asymptotic part of the resolving system. We find that 
a = 0 and ~ = 7 = 1. We introduce the "slow time" t 1 = st. We then obtain the system of 
equations 

= 0 

(3.1) 
E,t  =diag(e ,e , l ) ,  U, = ( u . , u , , w . )  

for flexural waves. 
As before, we seek a solution of (3.1) as a wave packet (2.2) with x replaced by n and t replaced by 

t 1 in all formulae. Denoting the set of values of qn(tl) by Qn, we assume that for any q. ~ Qn all the 
coefficients and their derivatives in (3.1) are of order one. 

The procedure for finding the unknown functions in the asymptotic representation of U,, remains 
the same. The Hamiltonians corresponding to the bending motion of the shell have the form 

HJ')(P,q) = {A(p,q)+[g,(q)p 4 +m2f=2(q)g2(q)p2 +maf-4(q)ga(q)]A-l(p,q)+ g4 (q)} j~ 
HJ 2) (p, q) := -HJ l ) (p ,  q) 

A ( p , q ) = [ p  2 +m2:-2(q)]  2, g l ( q ) = - ( k  I + vk2) 2 

g2 (q) = (1 - v )-'[( 2 + V )( k, + vk 2 )( k 2 - vk I ) - 2(k 2 + vk, )2 _ 2(k, + vk 2 )2 ] 

g3(q)-- - ( 1 -  V)-I(k2 + vk,) ~, g , ( q ) = ( k  2 + 2vk, k 2 + k~) 

The matrix dements  of L..o and N. will not be given because of their complexity. 

(3.2) 

4. S O L U T I O N  OF P R O B L E M  (1 .1) ,  (1 .2)  

Consider the vector-valued function 

T T T T 

where 

(4.1) 
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X 4 U,  X ~. , /2. .( t )  f ._- l , . ( t )1 = e u, , ,exp~te  ,), 
I=l k=O 

s ( i ) = i  . )  , . ~ . )  (,) l _ ( . . . / . , . \ :  o to, ( t ) d r  +e  p~ (t)~x +~e,/7 x [t)~q x ] 

[ ] -(1, , . )  . ,  w., ~(t) = E-Y2 x-q(~t)(t), "~t.k =[u~.k,ux.k, t,kl 

and the vector-valued function U~. is defined by the same formulae with t replaced by tl = e.t, and x and 
l replaced by n and r (r = 1, 2), respectively. Here l and r denote functions corresponding to the 
Hamiltonians H~ (0 and Jr-/. (r), respectively. For example, pO), qO) is a solution of system (2.9) for H~ - 
n(l) .  

By the above constructions U = is a formal asymptotic solution of (1.1). The components of U(0~ and 
IJ(,~)/c are polynomials ~/) and ~ )  of degree ~(~ and ~(nr~, respectively, with coefficients containing arbitrary 
integration constants. We denote by c~, d(~ • (i = 0, 1, . . . ,  o(0~,j = 0, 1 , . . . ,  o (~)  the constants appearing 
in the construction of P(0~ and P(0k, respectively. To find them we substitute (3.1) into the initial condi- 
tions (1.2) and equate the coefficients of the same powers of e V2. We also use the fact that ~0~= 0 = 
~1(~)_0 = ~ for any l and r. As a result, we obtain a sequence of equations 

4 4 (I) 
X u ") = ~;(r.;), X u = F~(:;) 

/=1  l:.k t = 0  I=1 ~,k t = 0  

4 4 

Y ~i.t.x.i(t) ,=o = Fi;(;), 5" Stu(1)k ,=o = F2-t,(;) (4.2) 
/ = l  /=1 

,. (1) (2))1 = F3~(;), k = 0 , 1  .... n'n'k + Wn'k t = 0  

where, in particular 

F~o = - n~0(~)  1120(0 

rl.ao(~) H°[w(2) , , , )~_x (.,(4) wO)~]l 
~ o  = -  o o t , .o - 0",.o ~ ' - ' 3 1 , " , . o  - ~ .O/J l ,=o  H.  H .  

and H ° = H,  0) (a 0, 0) and H ° = Hn 0) (a 0, 0). Let k = 0. In (4.2) we equate the coefficients of like powers 
of  ~. Then from the first four equations in (4.2) we find that o(00 = max{M10, M2o, K10, K20} = o*. 0 and 
arrive at a system of 4(o*0 + 1) algebraic equations for c~ (l = 1 . . . . .  4; i = 0, 1 . . . .  , o*,0). The last 
two equations in (4.2) give o(~)0 = max {M3o, K3o, O~o} = o*,0 and a system of 2(o*.0 + 1) equations for 
d(oj r) (r = 1, 2 ; / =  0, 1 . . . . .  o*,0). In a similar way, considering (4.2) for k t> 1, one can find the coefficients 
contained in P ~  and P(nr)~ 

5. ANALYSIS  OF T H E  S O L U T I O N  

It can be shown [1] that Im b~ 0 > 0 and Im b(nr)> 0 for anyt  t> 0. It follows that for t  > 0 the solution 
(4.1) is the superposition of two packets of flexurai waves with centres on the parallel lines x = qn (r) 
(r = 1, 2) and .(if m ~ 0) four packets of longitudinal waves and four packets of  torsional waves with 
centres x = q~O (l = 1, 2, 3, 4). Then the first and second packets of longitudinal waves corresponding 

• • 2 , ,  • to the Hamdtonlans H~ (1) and H~ ( ) move "bundled with the first and second packets of torsional waves 
generated by them, while the third and fourth packets of torsional waves with Hamiltonians H~ (3) and 
~/(4) generate, respectively, two packets of longitudinal waves. 

For m = 0 (axially symmetric motion) the solution is unsuitable (see (2.7)). However, in this case 
the equations of tangential motion (2.1) split into a system describing longitudinal waves and an equation 
for torsional waves [4]. The solution of the latter can be constructed by the above method. In the axially 
symmetric case the motion of the shell is the superposition of two packets of longitudinal waves with 
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Hamiltonians H~ 0 -- ~itp (l = 1, 2), two packets of torsional waves, independent of the longitudinal 
ones, corresponding to the functions H~ (0 = ~tP (l = 3, 4), and two packets of flexural waves, for which 

N o t e  t ha t  ifp(n r~ a n d p n  (0 a re  c lose  to  ze ro  (see  (2.7)),  t he  a s s u m p t i o n  tha t  u~, v~, w~, un, vn, w n are  of  
order one as E ~ 0 is violated. Thus, for a0 > 0 the vector-valued function (4.1) should be regarded 
as a formal .ap/rnptotic solution of  problem (1.1), (1.2) in some interval t e [0, Ts], wherep(nO(t),p(~O(t) 
> O,p(nO(t),p(~O(t) -- 1. The quantity Ts depends on the geometry of the shell and the relationships between 
the parameters appearing in the problem. For example, let f(x) < 0, ~nf = inff(x) and let 

fi2f < m 2 / (a 2 + m 2 ) (5.2) 

Then, as can be shown by analysing the Hamilton system, to satisfy at least the inequalities p(O (t) > 
0 we must take 

<.0 7 1 
• o / 2 ( q ) j  dq 

where q. can be found from the equation 

f 2 ( q . )  = m 2 i ( a  2 + m  2) 

If (5.2) is violated, then p(~O(t) > 0 in any interval [0, Ts]. 

6. E X A M P L E  

Consider a conical shell for which f (x)  = 1 - x/lc. Here tc = cosec 0, .o < x < r ,  where 20 is the angle at the 
vertex of the cone. Let Im b 0 >~ 1 and let 0 be a sufficiently small number.  Then initial conditions (1.2) at the vertex 
of the cone can be neglected. Computat ions were carried out for axially symmetric packets of flexural waves for 
a0 = 1, b0 = i, Jc = 4.8, L30 = 1,with the remaining par aLn. eters equal to zero. In Fig. 1 we show the solutions of 
the Hamil ton system, namely, q~'J (the solid lines) and ptnrJ (the dashed lines). It can be seen that wave variability 
decreases in a packet moving towards the vertex of the cone and, conversely, increases in a packet moving in the 
opposite direction. The graphs of./(') = I m  b(nO(tl) (the solid lines) and W ('3 = max I w(nO(tl) I (the dashed lines) 
shown in Fig. 2 indicate that the packet moving towards the vertex of the cone "spreads" more slowly. The wave 
pattern on the surface of a shell with parametersh/R = 4 x 10-3; v = 0.3; E = 6.24 x 10 -7 kg/(cm s2), and p = 1.18 
x 10- kg/cm ° is shown in Fig. 3. 
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